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Development Status of a 3-D Electron Fluid Model for Hall 
Thruster Plume Simulations 

Maria Choi1 and John T. Yim2 
NASA Glenn Resarch Center, Cleveland, OH, 44135 

A 3-D electron fluid model has been developed as a stepping stone to fully describe the 
electron current flow across magnetic fields inside a vacuum chamber and to provide electron 
flux to solar arrays for spacecraft surface charging model. A detailed description of the 
numerical treatment of the electric potential solver, including finite-volume formulation, 
implementation, and the treatment of boundary conditions, are presented in this paper. 
Verification tests of the model are presented. 

Nomenclature 
𝑩𝑩 = magnetic fields 
𝑒𝑒 = elementary charge 
𝑬𝑬 = electric fields 
Nx, Ny, Nz = number of cells in the x-, y-, z-directions 
ne = electron number density 
𝑛𝑛� = normal vector 
je = electron current density 
ji = ion current density 
Pe = electron pressure 
𝑆𝑆 = surface 
𝑉𝑉 = cell volume 
𝜎𝜎𝑒𝑒 = electron conductivity 
𝜇𝜇𝑒𝑒 = electron mobility 
�̿�𝜇 = electron mobility tensor 
𝜙𝜙 = plasma potential 
𝜙𝜙𝑤𝑤 = wall potential 
 

I. Introduction 
N order to better understand the testing environment of ground based vacuum chambers, it is critical not only to 
understand the motion of heavy particles in the plume, but also the movement of bulk electron flows. While the 

background pressure effects have been extensively studied in the past, 1-6 there is still limited understanding of how 
electrons in the plume of electric propulsion (EP) thrusters travel through and interact with the metallic conductive 
walls of vacuum chambers. Recent studies have suggested that the presence of conducting walls provides alternate 
pathways for electrons to travel from the cathode and serve as a recombination site.7-8 This electrical facility effect 
can become more significant for higher-power thrusters operating in vacuum facilities. However, this effect is absent 
in orbit and thus needs to be understood as simulations are most often validated through comparisons with ground 
facility measurement data. 
 A conventional way to simulate electrons in the plume of EP thrusters is to assume the Boltzmann relation. This 
method is simple and useful for isothermal, collisionless, and unmagnetized regions, but has major limitations for Hall 
thruster plume simulations. First, the electron temperature gradient in the plume is not negligible as they can vary by 
more than an order of magnitude from the near-field to the far-field. Second, the magnetic field strength is still strong 
in the near-field plume, as the field leaks into the plume. In order to improve the fidelity of electron model, early work 
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by Boyd and Yim9 demonstrated the viability of using a current conservation / Ohm’s Law approach to solve for 
electron current flows for a Hall thruster plume, assuming negligible magnetic fields. This work was further 
demonstrated on a cluster of Hall thruster plumes by Cai and Boyd.10 In both cases, the authors demonstrated 
difference in plume structures between their approach and the traditional Boltzmann relation approximation used in 
plume codes—which enforces exactly zero electron current everywhere in the plume such as the Coliseum tool 
described by Brieda and VanGilder.11 The work by Ref. 9-10 was further improved by Choi and Boyd12 by including 
a full electron mobility tensor to account for anisotropies in electron transport in vacuum chamber due to magnetic 
field effects. This study used in a 2-D axisymmetric unstructured mesh and showed that the magnetic field effects are 
non-negligible in the near-field plumes of the anode and cathode.  
 The present work utilizes the formulation by 
Choi and Boyd12 using a cell-centered finite 
volume method in 3-D Cartesian mesh. The 
ultimate goal of this work is to better understand 
electrical effects of a conducting vacuum 
chamber and provide electron current flux to a 
surface charging model13 that has been 
developed by the Air Force Research 
Laboratory (AFRL) at Edwards. In this paper, 
the full electron mobility tensor, �̿�𝜇, as in Ref. 4, 
and a full representation of the electron current 
density, 𝑗𝑗𝑒𝑒, in 3-D Cartesian grids is developed 
and presented to better understand the electron 
transport and current flow in a vacuum 
chamber. Using the Generalized Ohm’s law and 
the steady-state current conservation equation, 
the electric potential is derived.  
 The new electron model has a capability to 
model electron transport across a complex 
magnetic field topology in the plume, which 
includes a magnetic field separatrix and a purely 
axial component along the cathode centerline axis and a purely radial component near the discharge channel exit, as 
shown in Fig. 1. A detailed description of the numerical treatment of the electric potential solver, including finite-
volume formulation, implementation, and treatment of boundary conditions, are provided in the paper. Boundary 
conditions include a representative ion source representing a Hall thruster, and potential boundary conditions 
(Dirichlet for all metallic surfaces including chamber wall, and Neumann for dielectric thruster body). This approach 
will ultimately be integrated into a hybrid PIC plume code and will be used to map out the electrostatic potential and 
the electron current flows through the chamber volume of a Hall thruster firing in a vacuum chamber. 

Before simulating a full thruster, the model is verified using the method of manufactured solutions and a mock 
Hall thruster testcase. The simulation results will be compared against various measured data. The accuracy of the 
new model and effect of magnetic field in the near-field plume will be discussed.  

 

II. Physical and Numerical Models 
For a fluid description for the electron plasma, the generalized Ohm’s law and the steady state current conservation 

equation are derived as follows: 

𝒋𝒋𝑒𝑒 = 𝜇𝜇𝑒𝑒(𝒋𝒋𝑒𝑒 × 𝑩𝑩) + 𝜎𝜎𝑒𝑒 �𝑬𝑬 +
1
𝑒𝑒𝑛𝑛𝑒𝑒

∇𝑃𝑃𝑒𝑒� (1) 

∇ ∙ (𝒋𝒋𝑒𝑒 + 𝒋𝒋𝑖𝑖) = 0 (2) 
where 𝒋𝒋𝑒𝑒 and 𝒋𝒋𝑖𝑖 are the electron and ion current densities, respectively, 𝑩𝑩 is the magnetic field, 𝑬𝑬 is the electric field, 
𝜎𝜎𝑒𝑒 is the electron conductivity, 𝑛𝑛𝑒𝑒 is the electron number density, 𝑃𝑃𝑒𝑒 is the electron pressure assuming ideal gas, and 
𝜇𝜇𝑒𝑒 is the electron mobility defined as: 

𝜇𝜇𝑒𝑒 =
𝑞𝑞

𝑚𝑚𝑒𝑒𝜈𝜈𝑐𝑐𝑒𝑒
 

with 𝑞𝑞 being the elementary charge, 𝑚𝑚𝑒𝑒 the electron mass, and 𝜈𝜈𝑐𝑐𝑒𝑒 the total collision frequency of the electron fluid. 
Introducing plasma potential 𝜙𝜙 in relation to the electric field, −∇𝜙𝜙 = 𝑬𝑬, Eq.(1) can be re-written as follows: 

 
Figure 1. Complex magnetic field lines in a Hall thruster [12].  
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�̿�𝜇𝒋𝒋𝑒𝑒 = 𝜎𝜎𝑒𝑒 �−𝛻𝛻𝜙𝜙 +
1
𝑒𝑒𝑛𝑛𝑒𝑒

𝛻𝛻𝑃𝑃𝑒𝑒� (3) 

 
where �̿�𝜇 is the mobility tensor, 

�̿�𝜇 = �
1 −𝜇𝜇𝑒𝑒𝐵𝐵𝑥𝑥 𝜇𝜇𝑒𝑒𝐵𝐵𝑧𝑧

𝜇𝜇𝑒𝑒𝐵𝐵𝑥𝑥 1 −𝜇𝜇𝑒𝑒𝐵𝐵𝑦𝑦
−𝜇𝜇𝑒𝑒𝐵𝐵𝑧𝑧 𝜇𝜇𝑒𝑒𝐵𝐵𝑦𝑦 1

� 

Combining Eq. (3) with Eq. (2), we obtain the following equation to solve for the plasma potential: 

∇ ∙ (�̿�𝜇−1𝜎𝜎𝑒𝑒∇𝜙𝜙) = ∇ ∙ ��̿�𝜇−1
𝜎𝜎𝑒𝑒
𝑒𝑒𝑛𝑛𝑒𝑒

∇𝑃𝑃𝑒𝑒� + ∇ ∙ 𝒋𝒋𝑖𝑖 (4) 

where �̿�𝜇−1 is the inverse of the electron mobility tensor, 

�̿�𝜇−1 =
1

1 + 𝜇𝜇𝑒𝑒2|𝐵𝐵|2 �
1 + 𝜇𝜇𝑒𝑒2𝐵𝐵𝑥𝑥2 𝜇𝜇𝑒𝑒2𝐵𝐵𝑥𝑥𝐵𝐵𝑦𝑦 + 𝜇𝜇𝑒𝑒𝐵𝐵𝑧𝑧 𝜇𝜇𝑒𝑒2𝐵𝐵𝑥𝑥𝐵𝐵𝑧𝑧 + 𝜇𝜇𝑒𝑒𝐵𝐵𝑦𝑦

𝜇𝜇𝑒𝑒2𝐵𝐵𝑥𝑥𝐵𝐵𝑦𝑦 − 𝜇𝜇𝑒𝑒𝐵𝐵𝑧𝑧 1 + 𝜇𝜇𝑒𝑒2𝐵𝐵𝑦𝑦2 𝜇𝜇𝑒𝑒2𝐵𝐵𝑦𝑦𝐵𝐵𝑧𝑧 + 𝜇𝜇𝑒𝑒𝐵𝐵𝑥𝑥
𝜇𝜇𝑒𝑒2𝐵𝐵𝑥𝑥𝐵𝐵𝑧𝑧 + 𝜇𝜇𝑒𝑒𝐵𝐵𝑦𝑦 𝜇𝜇𝑒𝑒2𝐵𝐵𝑦𝑦𝐵𝐵𝑧𝑧 − 𝜇𝜇𝑒𝑒𝐵𝐵𝑥𝑥 1 + 𝜇𝜇𝑒𝑒2𝐵𝐵𝑦𝑦2

� 

 
  A cell-centered finite volume method is used to discretize the governing equation in Eq. (4) inside a control 
volume, 𝑉𝑉, as follows: 

� [∇ ∙ (�̿�𝜇−1𝜎𝜎𝑒𝑒∇𝜙𝜙)]𝑑𝑑𝑉𝑉 = � �∇ ∙ ��̿�𝜇−1
𝜎𝜎𝑒𝑒
𝑒𝑒𝑛𝑛𝑒𝑒

∇𝑃𝑃𝑒𝑒�� 𝑑𝑑𝑉𝑉
𝑉𝑉

+ � (∇ ∙ 𝒋𝒋𝑖𝑖)𝑑𝑑𝑉𝑉
𝑉𝑉𝑉𝑉

 (5) 

The volume integrals is transformed as surface integrals using the Green’s theorem. Then, the surface integral is 
approximated as the sum of all fluxes along all faces. In 3-D, this operation for the left hand term of Eq. (5) will be: 

� (𝜎𝜎�̿�𝜇−1∇𝜙𝜙)𝑞𝑞 ⋅ (𝑛𝑛�𝑑𝑑𝑆𝑆)𝑞𝑞

𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝑐𝑐𝑒𝑒𝐹𝐹

𝑞𝑞
= (𝜎𝜎�̿�𝜇−1∇𝜙𝜙)𝑒𝑒 ⋅ (𝑛𝑛�𝑑𝑑𝑆𝑆)𝑒𝑒 + (𝜎𝜎�̿�𝜇−1∇𝜙𝜙)𝑛𝑛 ⋅ (𝑛𝑛�𝑑𝑑𝑆𝑆)𝑛𝑛 + (𝜎𝜎�̿�𝜇−1∇𝜙𝜙)𝑤𝑤 ⋅ (𝑛𝑛�𝑑𝑑𝑆𝑆)𝑤𝑤 + (𝜎𝜎�̿�𝜇−1∇𝜙𝜙)𝐹𝐹 ⋅ (𝑛𝑛�𝑑𝑑𝑆𝑆)𝐹𝐹
+ (𝜎𝜎�̿�𝜇−1∇𝜙𝜙)𝑏𝑏 ⋅ (𝑛𝑛�𝑑𝑑𝑆𝑆)𝑏𝑏 + (𝜎𝜎�̿�𝜇−1∇𝜙𝜙)𝑓𝑓 ⋅ (𝑛𝑛�𝑑𝑑𝑆𝑆)𝑓𝑓 

where subscripts 𝑒𝑒,𝑤𝑤,𝑛𝑛, 𝑠𝑠, 𝑓𝑓, and 𝑏𝑏 represents east, west, north, south, front, and back faces, repectively. The final 
discretized form of this equation turns out to be identical to a cell-centered finite differencing discretization and has 
27 stencils in 3-D (Figure 2a). After discretization, the equation becomes a linear system of equations: 

𝑎𝑎𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏𝜙𝜙𝑖𝑖+1,𝑖𝑖𝑖𝑖 + 𝑐𝑐𝜙𝜙𝑖𝑖−1,𝑖𝑖𝑖𝑖 + 𝑑𝑑𝜙𝜙𝑖𝑖+1,𝑖𝑖𝑖𝑖 + 𝑒𝑒𝜙𝜙𝑖𝑖−1,𝑖𝑖𝑖𝑖 + ⋯+ ℎ𝜙𝜙𝑖𝑖+1𝑖𝑖+1 + 𝑖𝑖𝜙𝜙𝑖𝑖+1𝑖𝑖−1 + 𝑗𝑗𝜙𝜙𝑖𝑖−1𝑖𝑖+1 + ⋯ = 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 (5) 

where 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 is the right-hand side term and the coefficients 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, … are flux terms (i.e., 𝜎𝜎�̿�𝜇−1) at faces such as 
𝑒𝑒,𝑛𝑛,𝑤𝑤, 𝑠𝑠, 𝑓𝑓 and 𝑏𝑏 indicated in red boxes in Figure 2b. 
 The electron pressure is assumed to be isotropic and follows the ideal gas law. The ion current density information 
in each control volume is acquired through the particle-in-cell (PIC) method assuming quasi-neutrality. The plasma 
potential is determined by inverting the matrix. After the plasma potential is calculated, we can solve for the electron 
current density in Eq. (3): 

𝒋𝒋𝑒𝑒 = �̿�𝜇−1𝜎𝜎𝑒𝑒 �−𝛻𝛻𝜙𝜙 +
1
𝑒𝑒𝑛𝑛𝑒𝑒

𝛻𝛻𝑃𝑃𝑒𝑒� 

 
where the central differencing is used to calculate the derivatives. 
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(a) 

  
Figure 2. Illustration of (a) 27-point stencils in 3-D rectangular grid, and (b) cell-centers and faces. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. Boundary Conditions 
In Hall thruster plume simulation, typically two types of conditions are used: 1) direct value (e.g., bias-voltage and 

ground surfaces) and 2) gradient or flux to the surface (e.g., zero-gradient potential), which are Dirichlet and Neumann 
boundary conditions, respectively. Treatments of these boundary conditions for this model are discussed in this 
section. 

A. Dirichlet Boundary Condition 
There are multiple ways to implement Dirichlet boundary condition for the plasma potential. The simplest way is 

to have the surface on cell-center using a ghost cell (e.g., 𝜙𝜙0), as shown in Figure 3(a). Then, the known potential 
value can be incorporated as a boundary condition by moving the boundary term to the right hand side (RHS) of the 
equation for interior cells. This method requires modifying all interior  cells that have a boundary cell adjacent to them 
and will result in a matrix with size (𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧) by (𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧), where 𝑁𝑁𝑥𝑥,𝑁𝑁𝑦𝑦 , and 𝑁𝑁𝑧𝑧 are the number of cells 
in 𝑥𝑥-, 𝑦𝑦-, and 𝑧𝑧-directions. Instead of this incorporation, the boundary terms can be added in the matrix as additional 
rows, which preserves the matrix shape of interior cells but increases the matrix to [(𝑁𝑁𝑥𝑥 + 2) × �𝑁𝑁𝑦𝑦 + 2� × (𝑁𝑁𝑥𝑥 + 2)] 
by [(𝑁𝑁𝑥𝑥 + 2) × �𝑁𝑁𝑦𝑦 + 2� × (𝑁𝑁𝑥𝑥 + 2)]. 

When the Dirichlet condition is imposed on a cell-face, instead of a cell-center, as shown in Figure 3(b), either the 
finite-volume approach or finite-difference approach can be taken. For the finite-volume approach, forward 
differencing can be at the boundary surface (e.g., 𝑥𝑥 = 1

2
 in Figure 3b) used as follows: 

𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥
�1
2

=
𝜙𝜙1 − 𝜙𝜙1

2

�Δ𝑥𝑥2 �
 

For the finite difference approach, the ghost cell 𝜙𝜙0 is used and its value is replaced by a known potential value at 
the wall (i.e., 𝜙𝜙1

2
), which is approximated using Taylor’s expansion. In this study, both 1st order and 2nd order 

extrapolations are tested, defined as the following: 

𝜙𝜙0 = 2𝜙𝜙1
2
− 𝜙𝜙1 

𝜙𝜙0 =
8
3
𝜙𝜙1
2
− 2𝜙𝜙1 +

1
3
𝜙𝜙2 

 

(b) 
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respectively. When approximating the flux at the boundary cell face (𝜎𝜎�̿�𝜇−1)1
2
, 2nd order extrapolation is used: 

(𝜎𝜎�̿�𝜇−1)1
2

=
3(𝜎𝜎�̿�𝜇−1)1 − (𝜎𝜎�̿�𝜇−1)2

2
 

B. Neumann Boundary Condition 
For the Neumann boundary condition, our choice for the numerical scheme is limited to 1st order approximation 

as shown in Figure 4. The ghost cell 𝜙𝜙0 is replaced by the known gradient at the cell-face as 𝜙𝜙0 = 𝜙𝜙1 + 𝑔𝑔𝑤𝑤Δ𝑥𝑥, which 
is then used to modify the matrix. For a zero-gradient condition, a mirror condition can be used by setting 𝜙𝜙0 = 𝜙𝜙1. 

 

 

IV. Verification Tests 
Before implementing this model into a Hall thruster plume code, the model and algorithm have to be tested and 

verified. In this section, the method of manufactured solutions and a Hall thruster-like testcase are used to verify the 
model and algorithm. 

C. Method of Manufactured Solutions 
In order to verify the numerical model, the method of manufactured solution is used. In this study, the new model 

is tested using various types of functions as manufactured (true) solutions, including polynomial, sinusoidal, and  
exponential solutions, or some combination of these. The manufactured solution is substituted into the governing 
equation we are solving numerically, and the source term in the right-hand side is acquired that satisfy this solution. 
As an example, one of the manufactured solutions tried is shown below: 

𝜙𝜙𝑒𝑒𝑥𝑥𝐹𝐹𝑐𝑐𝑒𝑒 =
𝐾𝐾
6

(𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) 
And, the right-hand side is: 

𝐹𝐹 =
𝐾𝐾
3
𝜎𝜎𝑒𝑒(𝜇𝜇11 + 𝜇𝜇22 + 𝜇𝜇33) 

where 𝐾𝐾 = 3. The numerical and exact solutions are compared in Figure 5. The numerical solution calculated using 
the new model qualitatively reproduces the exact solution very well. 

For more quantitative study, a grid convergence study can be performed using the L2-norm error: 

‖𝑒𝑒‖𝐿𝐿2 = �� �(𝜙𝜙ℎ − 𝜙𝜙𝑒𝑒𝑥𝑥𝐹𝐹𝑐𝑐𝑒𝑒)2𝑑𝑑Ω𝑖𝑖
Ω𝑘𝑘

𝑁𝑁𝑘𝑘

𝑖𝑖=1

 

where 𝜙𝜙ℎ is the numerical value of the plasma potential and 𝜙𝜙𝑒𝑒𝑥𝑥𝐹𝐹𝑐𝑐𝑒𝑒  is the true solution. The convergence study is 
performed as shown in Figure 6, which confirms the 2nd order accuracy, incidated by the slope of the linear plot (≈
−2). 

(a) (b) 

 
 

Figure 3. Two types of Dirichlet conditions at a solid surface lying on the (a) cell-center and (b) cell face. 

 
Figure 4. Neumann boundary condition. 



 
American Institute of Aeronautics and Astronautics 

 
 

6 

 

 

 
Figure 6. Grid convergence study of the current model. 

 

D. A Hall Thruster-Like Testcase 
Before implementing this model into a Hall thruster plume simulation code, a Hall thruster-like testcase was 

constructed by Dragnea using a similar in 2-D axisymmetric hybrid model.14  Figure 7 shows (a) magnetic field lines 
and (b) magnetic field strength throughout the computational domain. Fixed plasma potentials of 300 V and 0 V at 
the left (anode-like) and the right (cathode-like) boundaries, and zero-gradient conditions were applied at the top and 
the bottom boundaries (Figure 8a). Constant electron temperature (Te = 25 eV) and electron number density (1e17 m-

3) were used. Since the current model is in 3-D, infinitely long boundaries were assumed in the z-direction. Figure 8 
shows the plasma potential calculated using (a) 2-D axisymmetric model solution that serves as a true solution, and 
(b) 3-D finite volume model developed in this study. 

 
Figure 5. Qualitative comparison of the numerical solution and the exact (manufactured) solution. 
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V. Summary and Future Work 
 A 3-D electron fluid model has been developed as a stepping stone to ultimately better understand the electrical 
facility effects in a conducting vacuum chamber and to provide electron flux to solar arrays for spacecraft surface 
charging model. This unique formulation can include a representative magnetic field throughout an entire vacuum 
chamber domain for future Hall thruster plume simulations. This paper described the derivation and verification of 
the plasma potential solver. Current on-going work includes calculating electron current using various boundary 
conditions and conducting numerical experiments with various magnetic field strengths and topologies. In the near 
future, this model combined with a steady-state electron energy equation will be implemented in AFRL’s plume code 
to study the electrical facility effects and spacecraft surface integration modeling. This model will be implemented in 

(a) (b) 

  
Figure 7. A Hall thruster-like test setup showing (a) magnetic field lines and (b) magnetic field strength 

(a) (b) 

  
Figure 8. Plasma potential calculated using (a) 2-D axisymmetric finite element model from Ref. 12, and  

     (b) the 3-D rectangular finite volume model in this study with constant values in z-direction. 
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a hybrid particle-fluid research framework developed by ARFL Edwards (TURF)13 and used to simulate a Hall thruster 
plume in both a full vacuum chamber at NASA GRC and on-orbit with spacecraft geometry in the near future. 
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